Description of Opisthoteuthis depressa n. sp.

By

I. Ijima, Ph. D., Rigaḱuhakushi,
and

S. Ikeda.

With Plate XXXIII.
During May last, a small nctopod, apparently helonging to the rare and very peculiarly shaped genus, Opisthoteuthis, was brought to n.s by our collector, a Misaki fisherman, who obtained it on the sonthern side of Okinose, ${ }^{1)}$ abont sixteen kilometres west of (ape sunosaki. It had taken one of the hooks, baited with shark-flesh, of a long line for deep-sea fishing, at a depth of about 250 fathoms. This locality is one of those in or about Sagami Bay, that seem to be teeming with zoological movelties. It is a rich Hexactinellid gromud, and of the numerous interesting objects which it has recently yielderl to us, might here be meutioned : living I'leurotomarin Peyrichi, likewise hooked "p, by a snood of a long line.

The genus (opisthoteuthis was instituted in 1889 by Verrill${ }^{2}$ to receive a West Indian species, named (). A!ussizii by the same anthor. So far as we can ascertain no second species has since been added to the genus. In proposing then, the name of O. depressa for our Okinose specimen, which differs in many important points from Verrill's species, we consider it unlikely that we are adding but an unnecessary synonym to the literature of Cephalopods.

[^0]Hoyle ${ }^{1)}$ seems to have entertained some doubt as to whether Opisthotenthis, together with Shumotenthis Ver., is not identical with Cirrotenthis of Eschricht. In our judgment, so far as Opisthotenthis is concerned, its generic distinction may well be considered as valid, preeminently on account of the umsually depressed head and body, which condition, conjointly with the thick and swollen brachial webs, gives to the animal a shape quite exceptional among (ephatopods. Except for the projecting tips of its arms, it may be compared to a plano-convex dise, of which the plane side is the inferior or the anterior and represents the inner surface of the umbrella. The arched superior or posterrior surface inclutes not only the posterior aspect of an ordinary cephalopod body, lut also the dorsal and ventral surfaces as well as the outer surface of the umbrella. The head and borly are thus flattened autero-posteriorly. This is accompanied, as might naturally occur, by an outspread of these parts laterally and especially along the ventral weh, whereloy such parts are, so to say, pushed into the monbella beneath its onter skin. Hence, the lateral portions of the broadened head and body lic directly over the bases of the lateral arms, while the median portion of the borly directly overlies the two ventral arms to a considerathle extent. At the same time the siphon and the brauchial aperture are shifted over to a considerable distance on the outer surface of the median ventral webl, and are directed in the ventral, not in anterior direction as is usually the cave. The close and wide connection thas cstablished between the head and body on the one hand and the monrella on the other, accounts for the fact that the latter, with arms enclosed in it, is horizontally expanded, the former acting as a restraint against its closing.

Apparently the same state of things in O. Ayassizii, as put down alove, is described by Verrill in a different way. According to him, the depressed body is together with the head "closely united" or "wholly adnate to the web connecting the arms, except at the posterior end behind the fins, where it is slightly free and overhangs a little." Again, it is satid that the head and body are so closely adnate to the branchial membranes "as to entirely conceal the ventral prortions." The position of the siphon and branchial aperture is pointed out by Verrill as being remarkally "posterior." The terms used by him are misleading in so far as they lead one to think that the body had laid itself down in such a way as to have come into union with the webs ly its ventral surface, and that the siphon and the branchial aperture hat shifted their positions along the ventral surface of the body towards its posterior end. Such is, in our opinion, decidedly not the case. The ventral portion of the body is nowhere to be considered as being concealed, except perhaps the mantle-rim, which is reflected inwards at the branchial aperture (a, fig. 9). On the contrary, it stands, at least for the greater part, exposed more than ever, only with this peculiarity, that it forms a part of the general superior surface, thereby losing all definable boundaries from the real dormal region or from the outer surface of the umbrella. Nor is there any gromd for supposing that the siphon and the branchial aperture have any way appoached the original posterior end, which is, strictly speaking, to be sought somewhere near the middle of the upper surface of the flattened body, behind the position of the dorsal cartilage. While thas retaining their usual relative position to the posterior body-end, they have shifted themselves a remarkable distance away from the centre, and along the outer surface, of the umbrellia.

To go on with the description of our specimen of (1) depressat the entire superior surface (tig. 2) is corered with a wrinkled and flabby
skin, the wrinkles abounding most near its margins where they generally run, with interrnptions, in circular curves. Many of these were probably to be seen even in the living state when the arms were at rest, certainly to disappear, however, under the tension caused by certain movements of the latter. Others may be the result of contraction brought about by immersion in alcohol. Underlying the skin there is a thick layer of very soft comective-tissue, that fills up the wehs and also covers the onter aspect of the arms ; so that, while it gives such a thickened or swollen appearance to the former. it conceals the latter beneath it, making their course motaceable on the outer side of the umbrellat. The same condition should also oltain in O. Agussizii.

As already mentioned, the entire superior surface is gently convex, but its central portion, i.e., the head and hody proper, in our alcoholic specimen must be described as being rather flatiened, except in the region of the eyes, where, it somewhat heases up into rounded prominences presenting the most projecting points of the upper surface (fig. 1). Otherwise, the head is as how, and about as large and as broad, as the body. The latter doen not overhang in any degree the branchial aperture, a condition suggesting that the depression of the body in the present species is carried somewhat to a greater extent than in (). Ayussizii.

The eves, which should be very large in (1). Ayussizii, are here of moderate size, and are separated from each other by a wide interorbital space. Their exterual openings are small semilunar slits, disposed longitudinally and with membranons uper and thick lower lids. The distance between the two openings exceeds twice the diameter of the eye-bulb, but is about equal to their distance from the free edge of the dorsal web.

The fins are very small compared with those of U. Ayussizii. In
our specimen the left fin is shrunk and smaller than the other, evidently owing to careless handing when fresh. The right fin is well preserved, rather thick and triangular in shape, being about one and a half times as broad (traussersely) as it is long. The free apex is romoded and of the two edges, the anterior is somewhat more arched than the posterior. The shape, however, is likely sulject to changes, according to the different state of contraction of the internal tissuen, as the fins are very soft structures containing no supporting dencuts whatever. Nevertheless, on maising them from their natural, laterally directed position and then releasing them, they return to the original position of their own accord. The pace of their attachment is close behind the eye-bulls, the distance between the middle of the fin-base and the eye-opening being about one fifths of the distance of the former from the branchial aperture. Moreover, the fin-base is situated more to the middle than the eye-opening, white the fin itself extends laterally but a short distance beyond the same.

The branchial aperture is a small crescent-shaped opening, situated at a distance from the free edge of the dorsal web about four times as great as that from the ventral web. It partially embraces the siphom, which, so far as it shows itself outside the loranchial aperture, is of very insignificant size. No part of it call be said to be freely projecting beyond the surface of the ventral web and its presence is only revealed by a slight prominence and be the existence of a small, transersely slit-like siphonal opening close behind the branchial apertire.

As already mentinned, the inner or inferior surface of the mantrella (fig. 3) is plane. The arms do not project above it, except very near the tijs, where the weln becoming thinner and fold-like, join them on their upper sides. The skin is tolerably firmly attarhed to the immer surface of the arms, as a result of the fact that there is interpesed on
this side little or no soft connective-tissne, so richly developed within the webs as well as over the outer surface of the arms. The entire skin is on the whole smooth, at any rate by no means so flabby as on the outer side of the umbrella. This difference in the amoment of skin on the two surfaces is assuredly a provision, by which the amimal is readily enabled by special exertions of its muscles, to assume a shape concave on the lower side, as, for instance, when it would attach itself by means of suckers to a projecting substratum or when it would exercise swimming motion by alternate closure and expansion of its arms. We believe the kind of locomotion just mentioned is of much greater moment to (opisthotenthis than to most other (ephalopods, since the ejection of water from the comparatively small branchial chamber and siphon can not but be of sulordinate significance.

The mouth is situated somewhat eccentrically, i.e., a short distance nearer to the free edge of the dorsal web than to that of the ventral. Its position about correxponds, on the superior aspect of the mimal, to the middle of a line comecting the anterior ends of the fins. 'There is a fincly verrucated buccal membrane present in the month. The jaws show mo characteristic features that seem to be worth moticing (figs. 4 \& 5). Whe have songht in vain fore the radula, but will not positively assert its total alsence.

The arms are subequal. The longest is the second lateral am, after which the ventral, the first lateral and the dorsal ams are successively slorter in the order mentioned. As seen after demoding them of skin, they are rather stout and are thickest at the basc, where they come in contact with one another and whence ther gratually taper off towards the tips. According to Verrill, the arms of (). Agnssizii are much narowed towards the bases and these are said to be mot in contact, - a deseription presmmably based solely on their external appearance on the inferior side, where the suckers decrease in
size and the zone between the two rows of cirri lessen in breadth towards the hase of the arms. The free ends are rather shemen, are compressed, and more or less ontwardly curled. Dis far the greater extent, say about nine tenthe of the eutire length of arms, is phainly wehbed, and such portions show a remarkable curvature on the same phane, riz., both right and left arms are all more or less carved dorsad, so that while the two dorsal arms face each , ther with their consonvity: the two rentral arms do so with their comvexity so that their ends are thrued laterad away from each other (fig. B). None of the arms shows any sign of hectocoty lization.

Comsernent upon the horizontal carvature of the arms, the edgeline of the dorsal web is the least extensive of all, suce the two dorsal arms apprach each other towards their ends. Marenver, it is deeply Whacken in, giving rise to a median angular notch, the two sides of which are symmetrical. On the other hand, the rentral web has, as is easily comprehensible, the most extensive edge-line, which is ahmost straightly stretched. With respect to the lateral webs, their edge-lines are all of about the same extent, always with this pecularity, that every one of them is obliguely indented, so as to form an open angle, the apex of which lies at least fonr times more distant from the tip of the next dorsal am than from that of the next ventral. As the result of this fact, a lateral weh can not be divided hy any lince into two symmetrical parts and each lateral arm, as also the ventral arm, has a greater stretch of narrowed web-continuation along the rentral than aloug the dorsal side near its end. There is then am appearance as if the two ends of the free edge of a lateral web terminated at mequal distances from the tips of the arms connected by it, as is known to be the case in some Cephaloporl species. But such seems not to be the real state in O. depressu. We are rather indined to consider that the above described condition of lateral wehs is merely
dependent pon the peculiar horizontal curvature of the arms hearing them, and that their shape would be similar to that of the domsal or of the ventral web, shond the bounding arms dispose themselves respectively like the dorsal or the rentral arms, what is likely to happen not unfiegnently dmring life.

The suckers and oirri show an ammement is in O. Agtassizii. The former, arranged in a single row to each arm, number 42-52 as far as can be counted, the greatest number being fonnd on the ventral arms. They are on the whole very small. Along the greater part of the arms, they are of about the same size, but do gradually though slightly decrease in size both proximally and distally, becoming especially smaller towards the tips of the arms. Thenke (). Agussizii, those situated about halforay along the ams are not any smallere than those which prerede or follow them. The suckers have simple hollows, their elges heing generally hat little prominent above the surface of the skin.

The cirri, present in two rows on each arm and alternating with its suckers are very inconspicnons structmres, being small, sleuder and attenuated to a point. Those towards the tip and also those close to the base of the arms are especially insignificant, being reduced to mere minute prominences. They rommence proximally between the first and the second suckers. 'The spare emelosed betwern the two mows of cirri is broadest halfory along the arm and narmows towards either eurl of it.
'The colour, as observed on the second day after the specimen had been put into weak alcohol, was predominantly matrler-red. () on the smperior surface, the head and body were somewhat miformly of that colour, but very dull in tone, except in the region just abose the eyes and the under surface of the fins, where they were poor or altogether wanting in pigment. On the periphery of the superior surface the
chromatophores were armaged in streaks that generally ran with interruptions, in circular pathe. On the inferior surface, the red was principally confined to the interbmohal spacen, the greater part of the arms themetres as well as the cirri and suckers being of light colour.

The measmements of our slecimen are as follows:
Median diameter of the entire animal. 55 mm.
Transverse diameter across filns. 65 mm .
Thickness at the middle of heant, about 8 mm .
Length of hody and head. from the branchial aperture to the level of the anterior borders of eyes, 27 mm .
Breadth of body proper, about 23 mm .
Breadth of head across eves, 26 mm .
Between eye-openings, 22 mm .
Diameter of eye-bull, 9 mm .
Between fin-bases, 17 mm .
From hase of fin to its tip, 5 mm .
Thickness of arm near base, $6 \frac{1}{2} \mathrm{~mm}$.
Length of dorsal arm, 38 mm .
Leugth of lat lateral arm, 44 mm .
Length of 2 ad lateral arm, 48 mm .
Length of ventral arm, 46 mm .
Length of dorsal web from mouth, 2.3 mm .
Length of ventral web from mouth, 27 mm .
Breadth of lateral web from mouth, $25-27 \frac{1}{2} \mathrm{~mm}$.
Diameter of largest sucker, 1 mm .
Length of longest cirrus, $1 \frac{1}{4} \mathrm{~mm}$.
Of the internal anatomy we can offer only such scanty notes as could be taken after a few incisions made so as to least impair our unigue specimen.

The presence of a dorsal cartilage conld only he ascertained after partially removing the doral skin. It is a single, transversely situated, cartilaginous bar (c., fig. 6), no part of which is directly continued into the fins. Here is another important point of difference from (). I!cussizii, in which it shonld oceur in two separate pieces, each contamed in the fin itself. The simple cartilaginous bar of the present species, is thin, 1 mm . broad (antero-josteriorly). 9 mm . and 11 mm . long respectively along the anterior and the posterior edge. It is sitnated alonot 4 mm . behind the level of fins, beneath the thick skin and closely over the visceral sac alove the posterior part of the liver (d.c., fig. 9). From its either end a muscle takes its origin (m., fig. 6). The latter soon bends forwards and inserts itself at the fin-base of the respective side.

Cutting open the mantle-cavity, the siphon, of which hot a small portion was visible from outside, is exposed in its entire length (fig. 7). It then measures 7 mm . in length and abont as much in breath at the base, representing a much flattened cone in its general shape. Its lower wall, which corresponds to the dorsal aspect of the siphon of normally shaped Cephalopods, is completely adnate with the comnective tissne of the rentral web. Its muscular substance splits, just beneath the anns, into two bands, which after rmming antero-laterally beneath the brauchial chambers, funally become lost in the comective tissues. The upper wall of the siphon is covered by the chromatophore-bearing skin directly continnous with that of the outer surface of the umbrella and is reflected outwards along it free edge at the siphon-basis, especially so at two lateral positions which evidently serve as the so-called button (but., figs. 7-9).

The mantle-edge at the branchial ajerture is reflected inwards (a). The reflected edge is laterally continued into a fold (l), which incompletely shuts off the bramchial chambers on the median side and
whose edge is capable of heing clasped ly above mentioned button of the corresponding side.

It is convenient for description's wake to speak of two branchial chambers, each containing a gill and which communicate with eath other, provided the buttons are fixed, by only a narrow space at the inner eud of the siphon. From this connecting space the two branchial chambers extend divergently forwards and laterally for a distance of abont 11 mm . They overlie the conmective tissue of the umbrella, clasp firm behind the visceral mass and are superiorly covered by the mantle (man., fig. 7) which strictly speaking represents their ventral wall. On the floor of the connecting space and right at the inner end of the siphon. there is a medianly situated, rounded elevation, bearing the anus. discernible as a blackish spot (an., fig. i). The said elevation is posteriorly closely embraced by a thin fold, likewise of the floor, and is sumeriorly directly continnous with the median septumi (sip.) that divides the entrances into the two branchial chambers.

Each of the latter is widest near the siphon-base and narrows antero-laterally to a cleft-like terminal portion. The widest portion is occupied by an extremely shortened gill (gi.), which is attached to the memhranons anterior wall enclosing the visceral mass (c.u.). Thus the gill is directel backwards or ventrad. Around its short rachis are grouped together the lobular lamella, so that the entire organ is reniform and presents an appeatance not unlike that of half of a peeled orange. 'There are in all six lamellae to each gill, but the one most medianly situated is very rudimentary and can not be observed when seen from above.

It was of course rery desitable to determine the sex of our specimen. Although there was no sign of hectocotylization on any of the arms, we discovered immediately on opening the mantle-eavity,
an organ which could not but be taken for the penis. In fact. further dissection som verified the view that we had before us a young male. It is to be assumed that the hectocotylization had not yet commenced in our specimen.

The penis (p.e.) is a tube-tike body about 3 mm . long, arising from the anterior wall of the left branchial chamber, about midway between the anns and the gill. It is directed backwards towards the inner end of the siphon. Within the visceral sac, the penis-root is directly continnons with a swollen ovate body (sp.s., figs. of \& 9), which looked as if consisting of a moiled tube, aparently owing to the presence of spirally arranged folds within. We illentify this body as the spermatophore-sac. This is joined at its anterior end by another ovate body ($p r$.) of about the same size, situated on the left of the cermm. This is probably the prostata. It is a thin-walled sac that contained a whitish mass, which, on close examination, powed to consist of certain epithelial duplicatures. From the junction hetween the prostata and the spermatophore-sac, a rather thick and spindleshaped duct (s. c.), which proceeds towards the right, eventually to continue itself into the thin vas deference. The swollen part of the spindle-shaped duct exactly corresponds in position to the seminal vesicle of other cephalopods. The vas deferens (i.d.) mons at first towards the left and then sharply turns on itself to pursue au opposite conrse, thas forming a loop that seems to be comnested with the spematophore-sac by a filamentons band. The man, which is to be considered as the testis (tes.), consists of three elongated lobes or rami. The first and the longest rums obliquely forwards and towards the left, crossing over the seminal vesicle and the prostata; the second runs forwards over the cocum and the third, which is the shortest, pursucs a downward course behind the cocum. The rami have a thin membranons envelope, the capsule, and contain a minutely verrugated
mass. The latter, on microscopic examination, was found to consist of a complicated system of epithelial duplicatures. the cells of which were cylindrical or sindle-shaped and regularly armaged. These are probably to be considered as spermatoblasts. Nowhere is the spermatozom to be fomm, indicating that our specimen stands in a very young stage of sexual development.

Of other anatomical facts, incidentally observed during the dissection of the genital parts, we find no points of particular interest and therefore prefer to leave them here munticed, only referming the reader to what are embodied in our fig. !, I'I. NXXIII.

C'olleye of Science, Imperial Unirersity, Tokiyo,
Junc 10th 1895.

Explanation of Plate XXXIII．

Opisthotenthis depressa $\mathrm{Ij} . \& \mathrm{Ik}$ ．

Fig．1．Side－view．Nat．size．
Fig．2．Superior view．Nat．size．
Fig．3．Inferior view．Nat．size．
Fig．4．Ventral jaw． $3 \times$ ．
Fig．5．Dorsal jaw． $3 \times$ ．
Firi．6．Dorsal cartilage and its mascles exposed．コメ．
c, Cartilage.
m, Muscle.
f, Fin.

Fig．7．Mantle－carity exposed by incisions on either side of the hranchial aperture and mantle thrown forwards so as to show its imer surface．About $2 \times$ ． ＂，Reflected rim of the branchial opening． （17．，Anus．
b ，Continuation of a，capable of being clasped by the button but． br．h．，Branchial heart peering through the visceral wall．
but．，Button．
si．，Gill．
man．，Inmer surface of mantle．
pe．，Penis．
sep．，Septum of the mantle－cavity．
si．，Siphon．
si．o．，Opening of siphon．
Fhis．8．Reproductive organs，diagrammatically represented．
（17．，Anus．
pe．，Penis．
fr．，Prostatat．
sp．s．，Spermatophore－sac．
s．r ．，Semimal vesicle．
tes．，Testis．
Fig．9．Half－jmaginary median section．
c. b., Arm-base.
lir. "., Branchial opening.
but. b., Buccal body.
(: !., Cerebral ganglion.
cie., Coecum.
l. c., Dorsal cartilage.
c. b., Eye-hulb, right.
in., Intestine.
l., Liver, riglit lobe.
(') ! !., Optic ganglion, right.
f. ! !., Pedal ganglion.
st., Stomach.
Other letterings as in foregoing figures. Dotted line indicates the upper surface of arms.

[^0]: 1) A submarine bank situated about 18 kilometres south of Misaki.

 थ) "Supplementary Report on the 'Blake,' Cephalopods." Bull, Mus. Comp. Zool., Vol. XI Also, "Mollusca of the New England Coast." Tretns. Conn. dcad., Vol. VI.

